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just as in lo, saddle points. In this case the sum of the indices of the singularities lying 
at the boundary is different from zero. 
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THE MOTION OF A SYSTEM OF VORTEX RINGS IN AN INCOMPRESSIBLE FLUID* 

M.A. BRUTYAN and P.L. KRAPIVSKII 

Hamiltonian formalism is developed in the problem of the motion of a 
system of coaxial vortex rings in an infinite , incompressible ideal fluid. 
An additional invariant of the motion representing the momentum of the 
surrounding fluid, is determined. In the case of two vortex rings the 
equations of motion are found to be completely integrable, and this 
explains the mutual slip-through of the vortex rings described qualitat- 
ively by Helmholtz. The influence of viscosity on the initial stage of 
motion is assessed. 

1. Hamiltonian formulation. The problem of the motion of vortex rings which has 
already been studied in the last century, represents the simplest case of a three-dimensional 
vortex flow. Even in this simplest case a theoretical analysis is possible only when the 
radius of the vortex ring is much greater than the radius of the vortex core. Let us consider 
a system of coaxial vortex rings moving through an infinite, ideal incompressible fluid at 
rest at infinity. We shall introduce a cylindrical r.r.0.-coordinate system where the z 
axis is directed along the general axis of the vortex rings. Let F, be the circulation of 
the vortex ring with index a,a=l,...,N,R, be the ring radius, o. the radius of the vortex 
core and za the longitudinal coordinate of the vortex. We shall seek the veclocity field 
outside the vortex rings in the form 

v = rot A (1.1) 

Symmetry considerations imply that A = A (r,z)es. Then from (1.1) we obtain 

dA 1 a(rA) 
n*=-d_' ",=TT- (1.2) 

Substituting (1.2) into the equation 

rotv = 5 I'$@-RJb(z-za) 
(I==1 

we arrive at the following equation for the vector potential A: 
N 

c r,6(r - R,)b(z - za) 
a-1 

(1.3) 

The right-hand side of (1.3) is obtained under the assumption that a/Rgi , and expresses 
the fact that the circulation along any closed contour enclosing the vortex with index .Z is 
equal to Fa. Since (1.3) is linear, it follows that the solution can be expressed as the sum 
of solutions for the isolated vortex rings, and has the form 
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where J, is the Bessel function. Substituting (1.4) into (1.2) we obtain expressions for the 
components of the velocity of motion of the vortices 

(1.51 

(1.6) 

where 

Rae = kIt(kR,) II (kRg) c-k’=a-r@‘dk 
T 
0 

Cap = kll(kRg) J,‘(kR,) e-k”a-‘g’dk 

0 

A prime accompanying the summation sign means that a term with index a is omitted. The 
expressions for E,a, CaR, DE6 can be written in terms of elliptic integrals. All terms in (1.5) 

and (1.6), apart from dza”ldt, are related to the action excerted on the vortex with index a 
by all the remaining vortices. 

When formal differentiation is carried out, unusual features appear in (1.2) connected 
with the action of a vortex ring on itself. As we know, their removal requires the intro- 
duction of a model of a vortex core. As a result, we obtain the following expression for the 
selfinduced velocity of a vortex ring apart from terms of order ~[(~/E~)ln(~/a)l, which weneglect 
by virtue of the initial assumption that a/R <i : 

The constant E depends on the form of the distribution of the vorticity within the vortex 
ring (details are given in /l/). 

For example, in the case of homogeneous vorticity (Kelvin's model) we have E = 0.?5, and 
in the case of a hallow vortex (Hicks's model) we have E= 0.5. Kelvin's theorem on circulation 
implies that the quantities R and a interdependent: in the first case RaZ= const, and in the 
second case R,z= cow. Therefore, the motion of the system of N vortices depends only on 2N 
variables za and R, is independent of ='a. 

Let us change to the Hamiltonian formulation of (1.5) and (1.6). We obtain the first 
integral from (1.5) 

P= 5 r,R~*=const (1.7) 
a=, 

We know that P = rR* is the momentum of the fluid surrounding the vortex ring, apart 
from a constant multiplier. Equation (1.7) expresses the law of conservation of momentum of 
the system in question. 

We can naturally write (1.5) in the form 

dR,% dH 
radl=--dr G 

(1.8) 

Indeed, the initial system of vortex rings is invariant with respect to displacement along 
the z axis and, provided that the Hamiltonian II also has this property, (1.8) will automatic- 

ally yield the invariant (1.7). Equating (1.5) and (1.8) we obtain 

(1.9) 

By analogy witn Kirchhoff's equations /2/ of the motion of discrete plane vortices, we 
will write the equation (1.6) in the form 

(1 .lO) 
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Equating (1.6) to (1 .lO) we obtain 

N 

h= c 
a=1 

(1.11) 

Thus the motion of a system of vortex rings can be represented in Hamiltonian form by 

(1.8), (1.10) with Hamiltonian (1.91, (1.11). As expected, the Hamiltonian His invariant with 
respect to displacement along the z axis, and the system of vortex rings in question has, in 
addition to the invariant I,= H, usual for the Hamiltonian systems, the invariant I*= P. We 
also note that the :equations (1.81, (l.lO),like the classical Kirchhoff equations, are not 
written in canonical form. To reduce the equations (1.8), (1.10) to canonical form it is 
sufficient to introduce the generalised coordinates Ya = "CL and moments pa = P&2. The 
Hamiltonian character of (1.8), (1.10) in physical coordinates can also be shown by introduc- 
ing the Poisson brackets 

2. Examples of the motion of the vortex rings. We shall study in more detail 
a system of double vortex rings. The systems has two degrees of freedom, two first integrals, 
and is fully integrable by virtue of Liouville's theorem. From the topological point of view 
the surface of the level of the integrals of motion H = con&P= const is equivalent to a plane, 
cylinder or torus /3/. For the first case we have e.g. the corresponding motion of vortex 
rings in which the distance separating them tends to infinity as l--oo. For the second case we 
have a slip-through sequence of vortex rings already described analytically by Helmholz, and 
motions corresponding to the third case are obviously impossible. 

Although Liouville's theorem guarantees the full integrability of the equations of motion 
of a system of two vortex rings, the authors did not succeed in expressing the solution in 
quadratures. We shall therefore consider slipping through of two identical vortex rings of 
equal intensity, under the assumption that 

1 = [(R, - R,)* + (21 - z~)~l"' 4 (R, -t- R,)/Z 

To make the models of vortex rings usable we must also assume that I p a. It is clear 
from the analytical point of view that under these assumptions the interaction between the 
vortex rings is analogous totheinteraction between the rectilinear vortex filaments. This 
follow5 from the formal expansion 
0 U/R), which will be neglected 

of the Hamiltonian (l-9), (1.11) apart from terms of 

H=_ r21/R- 
n 

4(Rl+fi?) 
- 2 ll 1 f hl (J%) + h ( R,) (2.1) 

Indeed, the first term of (2.1) is a Hamiltonian of the interaction between two vortex 
filaments. It determines the dynamic of motion of the vortices, since within the approxima- 
tion used the influence of the remaining terms is reduced to the effect of displacing the 
vortices with constant velocity along the z axis. 

The period T = 4nVfF of slipping through can be found from (2.1). Within a single 
period the system will move along the z axis by a distance 

Analogous arguments can be carried out for a system of N vortex rings of equal intensity, 
distributed near each other (04 1((R). In this case the motion of vortex rings is determined, 
as before, by the interaction between the corresponding vortex filaments which are displaced 
with constant velocity along the z axis. It follows that the known solutions for the recti- 
linear vortex filaments can be used to obtain the solutions for the vortex rings. In part- 
icular, we know that a system of N equal vortex filaments distributed along a single straight 
line at a constant distance from each other, rotates about the centre of vorticity with 
constant angular velocity. In the case of vortex rings the solution corresponds to the slip- 
ping through of N vortex rings. We note that the mutual slipping through of two vortex rings 
has been confirmed experimentally /4, 5/. 

3 . Effect of low viscosity. In the case of a viscous incompressible fluid and 
motion of even a single vortex ring is unsteady. The problem was studied in detail in /6/ 
under the assumption that the characteristic distance by which the vorticity has diffused is 
much smaller than the-ring radius, i.e. vteRe where v is the coefficient of kinematic 
viscosity. Here it was assumed that at the initial instant all the vorticity was Concentrated 
on the circle of radius R. The velocity of motion of a single vortex ring is given, to terms 
of order 
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0 [($)':'l*$' 

which are neglected, by the formula /6/ 

!$=&\le(+)-E~ 

where Ez 0.558 and P is a constant within the approximation used (in fact, I? can be assumed 
constant to within exponentially small terms 0 (exp (-RV4vt))). 

of 
of 

Using the same assumptions, we shall now consider the problem of the motion of a system 
N coaxial vortex rings in an infinite, incompressible viscous fluid. Combining the results 
/6/ with those of Sect.1, we arrive at the following conclusions: 

the equations of motion can be reduced, as before, to the Hamiltonian form (l.S), (1.10); 
the Hamiltonian of the system can again be represented in the form (1.9) where 

N 

h= c h, (R,, 0, 
Q-1 

$=+$[ln (3) -0.558] (3.1! 

we note that when the fluid is viscous, the Hamiltonian depends explicitly on time and is not 
an invariant of the motion; 

The momentum P of the system of vortices (1.7) is, as before, an invariant of the motion. 
We can write the expression for the Hamiltonian (1.9), (3.1) in the form 

N 

H=H,,- _& In (4Vl) 
z 

rawa 

a=1 
N 

‘HO= ’ 
-z- c, 

’ ~czrpR,R&fl+ o [ln(ER,)- 1.5581 

a. bl CL-1 

and here H, does not depend explicitly on time. 

REFERENCES 

1. 

2. 

3. 
4. 

5. 

6. 

WIDNALL S-E., The structure and dynamics of vortex filaments. In: Ann. Rev. Fluid. Mech., 
Palo Alto, CAlif., Vo1.7, 1975. 

KIRCHHOFF G., Mechanics. Lectures in Mathematical Physics. Moscow, Izd-vo Akad. Nauk SSSR, 
1962. 

ARNOL'D V.I., Mathematical Methods of Classical Mechanics. Moscow, NAUKA, 1979. 
OSHIMA G., The game of passing-through of a pair of vortex rings. J. Phys. Sot. Japan, 
Vo1.45, N0.2, 1978. 

YAMADA H. and MATSUI T., Preliminary study of mutual slip-through of a pair of vortices. 
Phys. Fluids. Vo1.21, 1978. 

SAFFMAN P.G., The velocity of viscous vortex rings. Stud. Appl. Math., Vol.49, No.4, 1970. 

Translated by L.K. 


